Meeting of the Ecosystem Approach Correspondence Group on Monitoring (CORMON) Coast and Hydrography

Marseilles, 28-29 March 2023

Agenda item 5

The Guiding Factsheet for the Candidate CI 25 “Land cover change”
Note by the Secretariat

The Guidance Factsheet for the Candidate Common Indicator 25 on Land Cover Change has been endorsed by the EcAp Coordination Group meeting (Athens, 9 September 2019). The conclusion and recommendation of the Meeting was the following: “The Meeting endorsed the Guidance Factsheet for IMAP Candidate Indicator 25 “Land Cover Change” (document UNEP/MED WG.467/6) and invited the Contracting Parties to test it during the next biennium, at appropriate spatial assessment scales, with the view to be included in the list of Common Indicators at COP 22 for its consideration.” During the last biennium the Candidate Indicator 25 has been tested at the Adriatic sub-region and the results were presented in a meeting in Tunisia on 10 November 2022. Based on this testing and parallel testing carried out as a part of the GEF MED programme Child project 2.1, several improvements were made to the Guidance factsheet.

In addition to the importance of land cover changes and the increase of the built-up areas in particular for the health and integrity of coastal ecosystems and landscapes, land cover is one of the crucial characteristics that should be taken into account for understanding risks from climate change. Changes for instance from forest to agricultural land cover can drastically diminish the retention function of forests when we face extreme precipitations and thus increase flooding and damages to property and loss of lives. In addition, increase in built-up area, especially in low elevation areas, increases the exposure of property and people to extreme events, especially in context of sea level rise and storm surges. Based on the experience and lessons learned from the testing on the Adriatic sub-region the following amendments to the Guidance Factsheet are proposed:

- Low Elevation Coastal Zone of < 5 m is added as a reporting unit. Currently, this is an additional analytical unit representing the elevation breakdown within the coastal area. It is a zone contiguous to the coast that indicates areas prone to future risks caused by climate change: coastal flooding, erosion and salinization.

- Coastal administrative units (cities/municipalities) are added as reporting units. These represent the lowest level of authority responsible for development of spatial/urban plans and managing coast.

- Change of minimum mapping unit (from 25 to 1 ha), minimum change detection (from 5 to 1 ha) and temporal scale to 3 years. Following the improvements in methodology and availability of open-source high quality data, it was proposed to harmonize the Land cover classes with the Land Cover Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture Organization (UN-LCCS system).

- Most recent open-source global datasets relevant for indicator calculation were indicated.

All proposed amendments to the Guiding factsheet are highlighted in red in order to keep track of the revisions made in comparison to the previous version of the document.

The meeting is invited to comment the proposed upgrades of the Guiding factsheet with a view to agree with the proposals.
The Guiding Factsheet for the Candidate Common Indicator 25 “Land cover change”

<table>
<thead>
<tr>
<th>Ecological Objective</th>
<th>The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator Title</td>
<td>Land cover change</td>
</tr>
</tbody>
</table>
| Relevant GES definition | - Linear and low-lying terrain coastal development minimised, with perpendicular development being in balance with integrity and diversity of coastal ecosystems and landscapes.
- Mixed land-use structure achieved in predominantly man-made coastal landscapes |
| Related Operational Objective | Integrity and diversity of coastal ecosystems, landscapes and their geomorphology are preserved. |
| Proposed Target(s) | Proposed targets should be considered as general recommendations to be adapted to regional/local specificities and knowledge.
- No Avoid further construction within the setback zone and low-lying coastal terrain
- Change of coastal land use structure, dominance of urban land use reversed
- Keep, and increase where needed, landscape diversity |

GES, targets and measures cannot be expressed quantitatively (as a threshold value) but due to country specific circumstances (socio-economic, cultural, historical) should be defined by the countries themselves. In doing so the CPs should take their spatial development and planning policies into account, as well as the legal obligations of the Barcelona Convention, in particular the ICZM Protocol. The above GES definition and Proposed target(s) are just examples.

Rationale

Justification for indicator selection

The UNEP/MAP’s Correspondence Group on Monitoring (CORMON) on Coast and Hydrography agreed, in May 2013, on a specific candidate common indicator for the Mediterranean region addressing land cover change.

Identifying and understanding the processes of land cover change (i.e. how land cover has been changed by humans and the processes that result in landscape transformation) is especially relevant for critical and vulnerable areas such as coastal zones, where several competitive uses are pressing. In this context urbanization, or land take, is the most dramatic change given the (almost) irreversibility of the process. The associated impacts could be listed as follows (Figure 1):

- Habitat loss with the associated impact on related ecosystem functions like C sequestration, regulation of water cycle, or biomass production.
- Fragmentation. The division of natural habitats in smaller parcels contributes to the isolation of number of species and also compromises its viability.

Therefore, the accumulated impacts of urbanization highly compromise ecosystem integrity. Since impacts are dependent on the scale and pace of changes it is important to consider these aspects when monitoring land cover changes.

Beyond the process of urbanization there are other changes that are less irreversible and also have important consequences:

- Conversion from forest to agricultural use. This results in habitat loss, habitat fragmentation and, consequently, loss of biodiversity. There is also a decrease on the degree of soil coverage by vegetation which in turn determines the risk of erosion. Also, this type of change results in
Ecological Objective | The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved
---|---
Indicator Title | Land cover change

- *Conversion from agriculture to semi-natural.* The impact strongly depends on the conditions at the time of abandonment. If conditions are favorable, land abandonment can lead to a recovery of natural vegetation. However, in case of unfavorable conditions like low vegetation coverage and/or steep slope, agricultural abandonment could lead to further land degradation.

- *Conversion from agricultural land to forest (forestation).* This change involves tree plantation and it has a positive impact on land stability by increasing the vegetation cover of the soil and the increase of C sequestration. In terms of biodiversity it strongly depends on the species used for plantation. Native species definitely increase diversity and connectivity.
Ecological Objective

The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

<table>
<thead>
<tr>
<th>Indicator Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land cover change</td>
</tr>
</tbody>
</table>

Figure 1. Overview of major impacts on coastal habitats

In the context of climate change, low-lying coastal terrain is prone to coastal flooding, erosion and salinization. The associated impacts could be listed as follows (Figure 2):

- Loss of coastal habitats, including wetlands, mangroves and beaches;
- Loss of currently dry land habitats due to advancing seas;
- Disruption and destruction of shorebird and sea turtle nests;
- Population declines in fishes, shellfish and other species that rely on coastal wetlands for at least part of their lives;
- Population declines in migratory birds that rely on coastal habitats during seasonal migrations.*

When preparing coastal adaptation plans to climate change priority should be given to low-lying coastal zone.

Scientific References

References are grouped by the topic addressed. Within each section references are sorted by relevance (the first ones are more relevant to the current indicator)
Ecological Objective	The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved
Indicator Title | Land cover change

Land use/land cover change and related impacts:

Climate change and related impacts:

- European Environmental Agency, 2021. Extreme sea levels and coastal flooding,
Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

Indicator Title
Land cover change

Methodology to compute land use change indicator:

Policy Context and targets
Ecological Objective

The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved

Indicator Title

Land cover change

Policy context description

After agreeing on including the candidate common indicator on Land use change in CORMON on Coast and Hydrography in 2013, it was decided that this candidate common indicator would need further testing, pilot implementation (including during the initial phase of IMAP), before the Contracting Parties could agree to its regional usage as a common indicator.

In order to follow-up on this CORMON Coast and Hydrography recommendation, an EcAp pilot project took place in the Adriatic to test the feasibility of this candidate common indicator on the sub-regional level, in the framework of an EU funded project on the “Implementation of the Ecosystem Approach in the Mediterranean by the Contracting Parties in the context of the Barcelona Convention for the Protection of the Marine Environment and the Coastal region of the Mediterranean and its Protocols (EcAp-MED project 2012-2015)”. The main conclusions of the Pilot project suggest that by using the common remote data and a common method for processing and presenting the results are feasible and a very positive step forward as far as monitoring the processes, the state and evolution of the coastal zones.

The results of this pilot are presented in document UNEP(DEPI)/MED WG.420/Inf.18.

The EcAp Coordination Group meeting held in September 2019 approved elaboration on the proposal for the upgrading of the common indicator on Land use change within the GEF Medprogramme project.

The results of elaboration and testing are presented in PAP/RAC documents (2022): Upgraded LCC Indicator 25 proposal; Report and GIS database with calculation of the LCC indicator for the pilot areas; Validation of testing results for upgraded LCC Indicator 25 in pilot areas.

As for the protocols of the Barcelona convention, The ICZM protocol identifies the need of balanced use of coastal zones in several articles.

For example, the Article 5 sets the objectives of integrated coastal management:

(a) to facilitate, through the rational planning of activities, the sustainable development of coastal zones by ensuring that the environment and landscapes are taken into account in harmony with economic, social and cultural development;
(b) preserve coastal zones for the benefit of current and future generations;
(c) ensure the sustainable use of natural resources, particularly with regard to water use;
(d) ensure preservation of the integrity of coastal ecosystems, landscapes and geomorphology;

In Article 6, where general principles of ICZM are discussed, it is highlighted that the formulation of land use strategies, plans and programs covering urban development and socioeconomic activities, as well as other relevant sectoral policies, shall be required (f). In addition, the Article 6 calls for the allocation of uses throughout the entire coastal zone to be balanced, and unnecessary concentration and urban sprawl to be avoided(h).

The Article 8 calls to Contracting Parties to ensure that their national legal instruments include criteria for sustainable use of the coastal zone. Some of such criteria ask for “identifying and delimiting, outside protected areas, open areas in which urban development and other activities are restricted or, where necessary, prohibited” (a). In addition, it asks for limiting the linear extension of urban development and the creation of new transport infrastructure along the coast(b).
Ecological Objective	The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved
Indicator Title | Land cover change

In addition, the EU’s Habitats Directive (92/43/EEC), Birds Directive (2009/147/EC), as well as Convention of Biological Diversity can also be relevant for policy context regarding land cover change.

Necessity to actively mainstream climate resilience considerations in all relevant policy fields is stressed in the EU Strategy on Adaptation to Climate Change. The European Commission stresses the implementation of adaptation strategies and plans at all levels of governance, particularly including three cross cutting priorities: integrating adaptation into macro-fiscal policy, nature-based solutions for adaptation, and local adaptation action.

The EU’s 8th Environment Action Programme (EAP) to 2030 (Decision (EU) 2022/591) set out thematic priority objectives in areas of climate change mitigation, adaptation to climate change, protecting and restoring terrestrial and marine biodiversity, a non-toxic circular economy, a zero pollution environment and minimising environmental pressures from production and consumption across all sectors of the economy. The EU’s 8th EAP to 2030 is relevant for coastal zones management in the context of climate change.

The Article 32 highlights degradation of marine and coastal ecosystems through harmful practices, pollution and processes such as eutrophication and acidification, and asks for urgent action to protect and restore marine and coastal ecosystems, including the ocean floor. In addition, it states that environmental degradation and the adverse effects of climate change are expected to increase further in the years to come, impacting the hardest on developing countries and vulnerable populations.

In order to help build resilience and support third countries in their efforts to mitigate, and adapt to climate change, as well as to protect biodiversity, Article 33 proposes that financial assistance from the Union and Member States to third countries should promote the UN 2030 Agenda, the Paris Agreement and the post-2020 global framework of the UN Convention on Biological Diversity and be in line with the priority objectives of the 8th EAP.

Targets
- **Avoid** further construction within the setback zone and low-lying terrain
- **Change** of coastal land use structure, dominance of urban land use reversed
- **Keep, and increase, where needed**, landscape diversity

Interpretation of targets and setting the measures to achieve them should be left to the countries. The reason is the strong socio-economic, historic and cultural dimensions in addition to specific geomorphological and geographical conditions in each country. In other words: although the indicator is a simple tool to show trends in land-cover changes for interpretation purposes, additional criteria should be taken into account i.e. due to strong socio-economic, historic and cultural dimensions in addition to specific geomorphological and geographical conditions the interpretation should be left to the countries.

These targets should be taken as general guidelines that need to be considered in light with the local knowledge. Given the relevance of the socio-economic, historic and cultural dimension, in addition to specific geographical conditions, local experts will provide the needed input in support to this indicator.
Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

Indicator Title
Land cover change

Policy documents

- ICZM Protocol (available in different languages at [http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:3A22009A0204(01)])

- Convention on Biological Diversity (www.cbd.int)

Indicator analysis methods

Indicator Definition

Land use/land cover change is the change of purpose to which land is profited by humans (e.g., protected areas, forestry for timber products, plantations, row-crop agriculture, pastures, or human settlements). Different parameters can be considered for evaluation of indicator on land use/land cover change. The parameters are summed in Table 1. The combined analysis of these parameters entails an inventory of the urbanization pressures on coastal ecosystems. In practice the parameters can identify: (i) where pressures are higher (by amount of change and by pace of the process); (ii) spatial trends (along the coast and landwards and in low-lying coastal terrain); and (iii) areas for priority action. However, responsible (local) institutions are necessary to correctly interpret these processes and to understand the drivers behind them.

Table 1. Description of the parameters calculated for the indicator Land Cover Change

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Data required</th>
<th>Reporting units</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of built-up land in coastal zone as a proportion of the total area in the same unit</td>
<td>% of artificial areas</td>
<td>Artificial surfaces at a single time shot</td>
<td>Coastal zone as defined by the country Also coastal strips (<300m*, 300m-1km, 1-10 km). Also low-elevation coastal zone (LECZ)**. Also coastal</td>
<td>State of urban areas at a particular time. This is used as a baseline, i.e. initial condition for the analysis of changes.</td>
</tr>
</tbody>
</table>
Ecological Objective

The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

<table>
<thead>
<tr>
<th>Indicator Title</th>
<th>Administrative units ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of built-up land in coastal units as a proportion of the area of built-up land in the wider coastal unit</td>
<td>% of artificial areas</td>
</tr>
<tr>
<td>Land take as % initial urban area on the coastal zone</td>
<td>% of increase of urban areas</td>
</tr>
<tr>
<td>Change of forest and semi-natural areas</td>
<td>% of change of forest and semi-natural areas</td>
</tr>
<tr>
<td>Change of wetlands</td>
<td>% of change of wetlands</td>
</tr>
<tr>
<td>Change of protected areas</td>
<td>% of change of protected areas</td>
</tr>
</tbody>
</table>
Ecological Objective

The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

Indicator Title

Land cover change

*the 300m wide coastal strip is proposed as relevant representation of the coastal setback (also considering the resolution issues)

** Low Elevation Coastal Zone (LECZ) is an area within the coastal zone prone to future risks caused by climate change: coastal flooding, erosion and salinization. LECZ should be constructed as area contiguous to the coast and below elevation threshold. For the Mediterranean region, 5 m above sea level is recommended elevation threshold.

*** Coastal administrative units (cities/municipalities) are the lowest level of authority responsible for development of spatial/urban plans and managing coast.

Methodology for indicator calculation

1. Data compilation - Land cover classes are typically mapped from digital remotely sensed data through the process of a supervised digital image classification or, alternatively, determined by in situ monitoring. Land cover classes needed for the indicator are based on the Land Cover Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture Organization (hereinafter UN-LCCS system). Level 1 of the UN-LCCS system is sufficient for the indicator’s land cover classes and they are listed in the Table 2. If more detailed classification is available, then it could be provided making the clear link with Table 2.

Table 2. Land cover classes for the Land Cover Change indicator

<table>
<thead>
<tr>
<th>LU/LC class</th>
<th>UN-LCCS classes (code and description)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial surfaces (also referred as built-up areas)</td>
<td>Surfaces with dominant human influence but without agricultural land use. These areas include all artificial structures and their associated non-sealed and vegetated surfaces. Artificial structures are defined as buildings, roads, all constructions of infrastructure and other artificially sealed or paved areas. Associated non-sealed and vegetated surfaces are areas functionally related to human activities, except agriculture. Also, the areas where the natural surface is replaced by extraction and/or deposition or designed landscapes (such as urban parks or leisure parks) are mapped in this class. The land use is dominated by permanently populated areas and/or traffic, exploration, non-agricultural production, sports, recreation and leisure. 50 Urban/Built-up Land covered by buildings and other man-made structures. Urban green (parks, sport facilities) is not included in this class. Waste dump deposits and extraction sites are considered as bare.</td>
</tr>
<tr>
<td>Agricultural</td>
<td>It includes: arable land, permanent crops, pastures and heterogeneous agricultural areas (complex cultivation patterns, land principally occupied by agriculture, with significant areas of natural vegetation). 40 Cultivated and managed vegetation/ agriculture (cropland) Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Greenhouses are considered as built-up.</td>
</tr>
<tr>
<td>Forest and semi-natural land</td>
<td>It includes: forests, scrub and/or herbaceous vegetation associations, open spaces with little or no vegetation.</td>
</tr>
</tbody>
</table>
Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved

<table>
<thead>
<tr>
<th>Indicator Title</th>
<th>Land cover change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Forest</td>
<td>Closed (tree canopy >70 %) / open forests (tree canopy 15-70%), evergreen/deciduous, needle/broad leaf, mixed.</td>
</tr>
<tr>
<td>20 Shrubs</td>
<td>These are woody perennial plants with persistent and woody stems and without any defined main stem being less than 5 m tall. The shrub foliage can be either evergreen or deciduous.</td>
</tr>
<tr>
<td>30 Herbaceous vegetation/grasslands</td>
<td>Plants without persistent stem or shoots above ground and lacking definite firm structure. Tree and shrub cover is less than 10 %. Irrespective of different human and/or animal activities, such as: grazing, selective fire management etc. It may also contain uncultivated cropland areas (without harvest/ bare soil period) in the reference year.</td>
</tr>
<tr>
<td>60 Bare / sparse vegetation</td>
<td>Lands with exposed soil, sand, or rocks and never has more than 10 % vegetated cover during any time of the year.</td>
</tr>
<tr>
<td>70 Snow and Ice</td>
<td>Lands under snow or ice cover throughout the year.</td>
</tr>
<tr>
<td>100 Moss and lichen</td>
<td>Moss and lichen</td>
</tr>
</tbody>
</table>

- **Wetlands**
 - Inland marshes, peatbogs, salt marshes, salinas, intertidal flats
 - **90 Herbaceous wetland**
 - Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.
 - **95 Mangroves**

- **Water bodies**
 - Water courses, water bodies, coastal lagoons, estuaries, sea and ocean.
 - **80 Permanent water bodies**
 - Lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies.
 - **200 Open sea**
 - Oceans, seas. Can be either fresh or salt-water bodies.

- **Protected areas**
 - Surfaces with any of the protection status (such as Natura 2000, IUCN or national-specific categories with the objectives to protect biodiversity, habitats, species, landscapes and alike in the coastal zone).
Ecological Objective | The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved
--- | ---
Indicator Title | Land cover change

2. **Data processing**
Data processing includes the following steps (Figure 2):

(i) **Pre-processing**

Land cover data could be available in two formats: vector data (polygons) or raster data (grid). For practical reasons, and to simplify the computing process, the first step is to ensure that all the data is in a grid of 1 ha or smaller. Conversion of vector data to a grid, or raster, is a common procedure in GIS techniques. Most of the GIS software provides different options to convert vector data into a grid. Here the ‘Maximum area’ criterion is suggested as one of the most standard methods.

(ii) **Combining data**

Once the data is available in 1 ha or smaller grid, the different layers are combined. This process is automatically done by any GIS software and creates an associated table with all the information available for each cell in the grid. The layers to be combined are listed as follows:

1. Baseline land cover data (y0).
2. Land cover change data (y0-y1).
3. Delimitation of coastal zone and strips.
4. Administrative unit where the coastal zone belongs. (NUTS3 or equivalent).
5. Delimitation of Low Elevation Coastal Zone.

Therefore the minimum information that the resulting table should contain is as follows:

1. Grid ID. Unique identifier for each cell in the grid of 1 ha.
2. Coastal zone. Yes/No. Boolean parameter that indicates if the cell is within the coastal zone, as defined by the country.
3. Coastal strip. Yes/No. Boolean parameter that indicates if the cell is within the coastal strip.
4. Administrative unit. Code that identifies the administrative unit where the cell is located. (NUTS3 of equivalent).
5. Low Elevation Coastal Zone. Yes/No. Boolean parameter that indicates if the cell is within the Low Elevation Coastal Zone.
6. Land cover class at t0. Code for the land cover class of the cell.

(iii) **extracting statistics**

As a result of the previous step a table should be available with the unique code of each cell of the 1 ha grid and all related parameters. Therefore the extraction of the statistics for the calculation of the indicator could be done in a spreadsheet and does not require any GIS processing (see Data analysis and assessment outputs section for the details).

Detailed description of the calculation for the Land Cover Change indicator using open source software is given in the Manual for calculating IMAP Common Indicator 25, Report; PAP/RAC, Split, Croatia (Gilić F. 2022).
Ecological Objective

The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved

Indicator Title

Land cover change

![Diagram of data processing for the Land Cover Change indicator]

Figure 2. Data processing for the Land Cover Change indicator

Indicator units

The first monitoring will focus on the base line. The indicator units are indicated below:

1. km^2 of built-up area in coastal zone;
2. $\%$ of built-up area in coastal zone;
3. $\%$ of other land cover classes in coastal zone;
4. $\%$ of built up area within coastal strips of different width (see Table 1) compared to wider coastal units;
5. $\%$ of other land cover classes within coastal strips of different width (see Table 1) compared to wider coastal units;
6. km^2 of protected areas within coastal strips of different width;
7. km^2 of LECZ;
8. km^2 of built-up area within LECZ;
9. $\%$ of built-up area within LECZ;
10. $\%$ of other land cover classes within LECZ;
11. km^2 of protected areas within LECZ.

For second monitoring the following units will also be relevant:

12. $\%$ of increase of built-up area, or land take;
13. $\%$ of change of other land cover classes;
14. $\%$ of change of protected areas;
15. $\%$ of increase of built-up area, or land take within LECZ;
16. $\%$ of change of other land cover classes within LECZ;
17. $\%$ of change of protected areas within LECZ.
Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved

<table>
<thead>
<tr>
<th>Indicator Title</th>
<th>Land cover change</th>
</tr>
</thead>
</table>

List of Guidance documents and protocols available

Report and GIS database with calculation of the LCC indicator for the pilot areas. Report; PAP/RAC, Split, Croatia (Baučić M., Morić Španić A., Gilić F. 2022)

Validation of testing results for upgraded LCC Indicator 25 in pilot areas. Report; PAP/RAC, Split, Croatia (Baučić M., Morić Španić A., Gilić F. 2022)

Manual for calculating IMAP Common Indicator 25, Report; PAP/RAC, Split, Croatia (Gilić F. 2022)

Data confidence and uncertainties

Production of land use/land cover data from remote sensing is always a compromise between precision and efforts required to derive the information from satellite images. The data sources listed below (see Available data sources) have been validated by the responsible institutions or providers of the data. Additionally, if analogue maps from official institutions are available they could be digitalised and used accordingly.

Quality assurance/control always involve a selection of percentage of points where the derived information is checked against “ground truth” –usually ancillary information like official maps, cadastre,... but also field inspections.

Validation of testing results for upgraded LCC Indicator 25 in pilot areas. Report; PAP/RAC, Split, Croatia (Baučić M., Morić Španić A., Gilić F. 2022)

Methodology for monitoring, temporal and spatial scope

Available Methodologies for Monitoring and Monitoring Protocols

The most elaborated guidelines are available from the Corine Land Cover programme (currently integrated in the Copernicus Programme).

Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

Indicator Title
Land cover change

Available data sources

The data sources listed below are transnational-open global data bases (free for use), (the first one only European, the rest global). The report “Validation of testing results for upgraded LCC Indicator 25 in pilot areas. Report: PAP/RAC, Split, Croatia (Baučić M., Morić Španić A., Gilić F. 2022)” has proved their use. Existing national data (official) is also suitable for this indicator.

- **Corine land Cover (only European coverage)** http://land.copernicus.eu/pan-european/corine-land-cover

- **GlobCover. Global land cover dataset at 300m resolution from the MERIS sensor on the ENVISAT satellite.** http://due.esrin.esa.int/page_globcover.php

- **ESA WorldCover Project Land cover**
WorldCover provides a global land cover product at 10 m resolution for 2020 based on Sentinel-1 and 2 data. The ESA WorldCover product is provided free of charge, without restriction of use. https://esa-worldcover.org/en

- **OpenStreetMap (OSM) data**
OpenStreetMap (OSM) is based on crowdsourced volunteered geographic information, it is often being used as a valuable data source for extracting useful information. OSM coastline can be downloaded from https://osmdata.openstreetmap.de/. Administrative boundaries from https://osm-boundaries.com/.

- **Copernicus DEM 30**
Copernicus DEM is a digital surface model (DSM) in resolution of 30 m, it has world cover and is freely available, https://land.copernicus.eu/global/content/annual-100m-global-land-cover-maps-available.

- **World Database on Protected Areas**
World Database on Protected Areas is the most exhaustive global database on terrestrial and marine protected areas, managed by UNEP World Conservation Monitoring Centre (UNEP-WCMC) and is being updated on a monthly basis https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA.
Ecological Objective | The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved

Indicator Title | Land cover change

Spatial scope guidance and selection of monitoring stations

The exact territorial extent (coastal area for the analysis) of the monitoring should be defined. The Mediterranean ICZM Protocol defines the landward limit of coastal zone as the “limit of the competent coastal units as defined by the Parties (Article 3).” In other words, the landward limit will be country-specific, e.g. dependant on definition given by certain Contracting party when ratifying the Protocol.

As for the resolution of the source data it is a “compromise between precision and efforts needed in processing the satellite images. The following indications could be considered minimum requirements:

- Minimum mapping unit of 25 ha 1 ha and 100 m of linear elements
- Minimum change detection 5 ha 1 ha

Temporal Scope guidance

The temporal scale should be 5 3 years, in order to be effective on the counteracting negative effects and taking early actions on problematic areas. That will ensure two monitoring within one QSR period.

Data analysis and assessment outputs

Statistical analysis and basis for aggregation

The statistics can be computed as follows:

1. Percentage of built-up area in coastal zone/coastal strips.
 a) Filter the data by the grids belonging to the coastal zone/coastal strips.
 b) Calculate total area by counting the total number of cells. This is the area in km².
 c) Filter, within the coastal zone/coastal strip, by land cover “artificial areas” (see Table 2 for the definition of land cover classes).
 d) Calculate area of “artificial areas” by counting the number of cells. This is the area in km².
 e) Divide 1d by 1b in order to obtain the percentage of artificial area on the coastal zone/coastal strip.

2. Percentage of other land cover classes on the coastal zone/coastal strip. As complementary to “Percentage of built-up area in coastal zone” the same procedure could be applied to each land cover class as defined in Table 2. In that case the procedure described in 1 will be replicated by changing “artificial areas” with the other land cover classes.

3. Area of built-up land in coastal units/coastal strip as a proportion of the area of built-up land in the wider reference region.
 a) Filter the data by the grids belonging to the entire coastal administrative unit where the coastal zone belongs (NUTS3 or equivalent).
 b) Filter by land cover “artificial areas” (see Table 2 for the definition of land cover classes).
 c) Calculate area of “artificial areas” by counting the number of cells. This is the area in km².
Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

<table>
<thead>
<tr>
<th>Indicator Title</th>
<th>Land cover change</th>
</tr>
</thead>
</table>

- \(km^2 \).
- \(d) \) Sum 1d with 3c.
- \(e) \) Divide 1d by 3d. This value is the percentage of built-up area within the coastal administrative units that is located on the coastal zone/coastal strip.

4. **Percentage of built-up area in LECZ.**
 - \(a) \) Filter the data by the grids belonging to the LECZ.
 - \(b) \) Calculate total area by counting the total number of cells. This is the area in \(km^2 \).
 - \(c) \) Filter, within LECZ, by land cover “artificial areas” (see Table 2 for the definition of land cover classes).
 - \(d) \) Calculate area of “artificial areas” by counting the number of cells. This is the area in \(km^2 \).
 - \(e) \) Divide 4d by 4b in order to obtain the percentage of artificial area on the LECZ.

5. **Percentage of other land cover classes on the LECZ.** As complementary to “Percentage of built-up area in LECZ” the same procedure could be applied to each land cover class as defined in Table 2. In that case the procedure described in 4 will be replicated by changing “artificial areas” with the other land cover classes.

6. **Area of built-up land in LECZ as a proportion of the area of built-up land in the wider reference region.**
 - \(a) \) Filter the data by the grids belonging to the entire coastal administrative unit where the LECZ belongs (NUTS3 or equivalent).
 - \(b) \) Filter by land cover “artificial areas” (see Table 2 for the definition of land cover classes).
 - \(c) \) Calculate area of “artificial areas” by counting the number of cells. This is the area in \(km^2 \).
 - \(d) \) Sum 4d with 6c.
 - \(e) \) Divide 4d by 6d. This value is the percentage of built-up area within the coastal administrative units that is located on LECZ.

7. **Land take as % of initial urban area on the coastal zone/coastal strip.** This parameter will start to be computed on the second monitoring since the first monitoring focus only on the baseline (state at \(t_0 \)).
 - \(a) \) Filter the data by the grids belonging to the coastal zone/coastal strip.
 - \(b) \) Calculate total area by counting the total number of cells. This is the area in \(km^2 \).
 - \(c) \) Filter, within the coastal zone/coastal strip, by land cover “artificial areas” (see Table 2 for the definition of land cover classes) for \(t_0 \).
 - \(d) \) Filter, within the coastal zone/coastal strip, by land cover “artificial areas” (see Table 2 for the definition of land cover classes) for \(t \).
 - \(e) \) Calculate 7d-7c and then divide by 7c. This provides the percentage of land take compared to the initial built-up area.
8. **Change of forest and semi-natural land.** This parameter will start to be computed on the second monitoring since the first monitoring focus only on the baseline (state at t_0).
 a) Filter the data by the grids belonging to the coastal zone/coastal strip.
 b) Calculate total area by counting the total number of cells. This is the area in km2.
 c) Filter, within the coastal zone/coastal strip, by land cover “Forest and semi-natural land” (see Table 2 for the definition of land cover classes) for t_0.
 d) Filter, within the coastal zone/coastal strip, by land cover “Forest and semi-natural land” (see Table 2 for the definition of land cover classes) for t_1.
 e) Calculate 8d-8c and then divide by 8c. This provides the percentage of change of forest and semi-natural areas for the given period.

9. **Change of wetlands.** This parameter will start to be computed on the second monitoring since the first monitoring focus only on the baseline (state at t_0).
 a) Filter the data by the grids belonging to the coastal zone/coastal strip.
 b) Calculate total area by counting the total number of cells. This is the area in km2.
 c) Filter, within the coastal zone/coastal strip, by land cover “Wetlands” (see Table 2 for the definition of land cover classes) for t_0.
 d) Filter, within the coastal zone/coastal strip, by land cover “Wetlands” (see Table 2 for the definition of land cover classes) for t_1.
 e) Calculate 9d-9c and then divide by 9c. This provides the percentage of change of wetlands for the given period.

10. **Land take as % of initial urban area on the LECZ.** This parameter will start to be computed on the second monitoring since the first monitoring focus only on the baseline (state at t_0).
 a) Filter the data by the grids belonging to the LECZ.
 b) Calculate total area by counting the total number of cells. This is the area in km2.
 c) Filter, within the LECZ, by land cover “artificial areas” (see Table 2 for the definition of land cover classes) for t_0.
 d) Filter, within the LECZ, by land cover “artificial areas” (see Table 2 for the definition of land cover classes) for t_1.
 e) Calculate 10d-10c and then divide by 10c. This provides the percentage of land take compared to the initial built-up area.

11. **Change of other land cover classes on the LECZ.** As complementary to “Land take on the LECZ” the same procedure could be applied to each land cover class as defined in Table 2. In that case the procedure described in 10 will be replicated by changing “artificial areas” with the other land cover classes.

The above mentioned analysis can be complemented with the following ones that provide additional sight on the land cover indicator.
Ecological Objective

The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved.

<table>
<thead>
<tr>
<th>Indicator Title</th>
<th>Land cover change</th>
</tr>
</thead>
</table>

12. **Additional analytical units**

 a) **Setback zone** (if defined by country). Given the relevance of this part of the coastal area, as referred on the ICZM protocol, the indicators on % of built-up and land take can be analysed for this specific zone.

 b) **Elevation breakdown** within the coastal area. Distance to the coast and elevation are elements that configure different habitat distribution and patterns. With available local knowledge 3 to 5 elevations classes could be considered to be analysed independently within the coastal area in order to better link the pressure of land take to specific habitats (5 – 10, 10 – 50, 50 – 100, 100 – 300, > 300).

13. **Additional parameters**

 What has been lost by urbanization?

 a) **Filter the data** by the grids belonging to the coastal zone.

 b) **Calculate total area** by counting the total number of cells. This is the area in km².

 c) **Develop a pivot table** with land cover classes at t_0 on rows, and land cover classes at t_1 on columns. Cells in this matrix will contain the area that has changed from certain land cover class at t_0 to a new class in t_1.

 d) **Select the column** for “Built-up areas”.

 e) **Values on the rows** indicate the different land cover classes at t_0 that have been converted into built-up area.

 Values from 5 can be divided by the corresponding area of the same class at t_0. This will provide the percentage of certain land cover class that has been converted into built-up.

Expected assessments outputs

The outputs are detailed below:

- Digital map with the land cover classes for the coastal area. Land cover classes should follow the classification provided in Table 2. If more detailed classification is available, then it could be provided making the clear link with Table 2. The following specifications will ensure the interoperability of the maps provided by different institutions/countries:
 - Format: raster GeoTIFF (Geographic Tagged Image File Format) 1 ha
 - Metadata:
 - Title of the map
 - Geographic reference.
 - Bounding box.
 - Coordinate reference system
 - Temporal reference (year)
 - Responsible organisation
- Spreadsheet with the calculated indicators as described in the methodology.
- Starting with the second monitoring, additional maps will be provided indicating areas of land take (new urbanization). The specifications for these maps are the same as indicated above.
Ecological Objective
The natural dynamics of coastal areas are maintained and coastal ecosystems and landscapes are preserved

Indicator Title
Land cover change

Known gaps and uncertainties in the Mediterranean

The definition of the analytical units of the coastal zone could be revised in view of more detailed data on habitats distribution, or input from national experts. In any case it is important to take into account the implications of the different delineations on the interpretation of the results. The use of remote sensing and the selected resolution is the main constrain when analysing the outcomes

- Not all changes are observed since there is minimum change detection. Therefore, the patterns observed indicate that changes are underestimated. In any case the proposed approach is still relevant since it provides an idea of the magnitude of the processes of urbanization. Given the resolution and processing, linear elements are not well captured; therefore, linear elements perpendicular to the coast, for example, are not detected.

- The information currently available does not allow identifying built-up on the territorial waters.

Since these limitations arise from the definition of the resolution, there is space for improvement if it is needed. However, there is always a trade-off between resolution and efforts required to obtain the information.

In addition, countries may obtain data from different sources (different resolution, different level of precision) which may make comparability of data difficult.

Contacts and version Date
Key contacts within UNEP for further information

<table>
<thead>
<tr>
<th>Version No</th>
<th>Date</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1</td>
<td>27/6/16</td>
<td>PAP/RAC</td>
</tr>
<tr>
<td>V.2</td>
<td>20/07/16</td>
<td>UAB</td>
</tr>
<tr>
<td>v.3</td>
<td>01/04/19</td>
<td>PAP/RAC</td>
</tr>
<tr>
<td>v.4</td>
<td>15/09/22</td>
<td>PAP/RAC</td>
</tr>
</tbody>
</table>